Metallapyrimidines and Metallapyrimidiniums from Oxidative Addition of Pyrazolate N–N Bonds to Niobium(III), Niobium(IV), and Tantalum(IV) Metal Centers and Assessment of Their Aromatic Character

T. Hiran Perera, Richard L. Lord, Mary Jane Heeg, H. Bernhard Schlegel, and Charles H. Winter*

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

Supporting Information

ABSTRACT: Treatment of MCl₄(4-tBupy)₂ (M = Nb, Ta) with 3 equiv of potassium 3,5-di-tert-butylpyrazolate afforded (2,2,6,6-tetramethyl-5-ketimidehept-3-en-3-imide)bis(3,5-di-tert-butylpyrazolate)chloroniobium(V) (1; 24%) and (2,2,6,6-tetramethyl-5-ketimidehept-3-en-3-imide)bis(3,5-di-tert-butylpyrazolate)chlorotantalum(V) (2; 27%) as deep red and yellow crystalline solids, respectively. Analogous treatment of NbCl₄(THF)₂ with 3 equiv each of 4-tert-butylpyridine and potassium 3,5-di-tert-butylpyrazolate and excess Na/Hg in diethyl ether afforded (2,2,6,6-tetramethyl-5-ketimidohept-3-en-3-imide)bis(3,5-di-tert-butylpyrazolatoniobium(V) (3; 32%) as deep red crystals. X-ray crystallography established that 1 and 3 each contain two intact η²,3,5-di-tert-butylpyrazolate ligands as well as one 3,5-di-tert-butylpyrazolate ligand that has undergone N–N bond oxidative addition to the niobium center. In 1, one of the nitrogen atoms abstracted a hydrogen atom from tetrahydrofuran solvent, whereas no hydrogen atom abstraction occurred in 3. These complexes represent rare examples of pyrazolate N–N bond cleavage. NICS calculations suggest that the niobacycles are weakly aromatic, in comparison to the highly aromatic 3,5-di-tert-butylpyrazolate ligands and pyrimidine.

Complexes containing pyrazolate ligands have been extensively investigated. The pyrazolate ligand can adopt terminal coordination modes such as η² and η⁶ and bridging coordination modes that include μ-η²,η¹, μ-η²,η⁵, and many others. Pyrazolate ligands are remarkably unreactive and generally serve as ancillary ligands. Oxidative addition of pyrazolate N–N bonds could afford metallapyrimidines, which are metal-containing analogues of the aromatic nitrogen heterocycle pyrimidine. Metallapyrimidines fall into the general class of metallaaromatics. Metallabenzenes complexes are the most widely studied metallaaromatics and contain planar or nearly planar, conjugated six-membered rings with six delocalized π electrons. There is continuing interest in these compounds, due to their structural resemblance to benzene, potential aromaticity, and interesting reactivity. Nitrogen-containing metallabenzenes analogues are restricted to an osmyapyridine, an osmyapyridinium, and a tantalapyridine. The only report of pyrazolate N–N bond cleavage involved a series of tetranuclear uranium complexes that were obtained upon treatment of U₁₃(THF)₄ with potassium 3,5-dimethylypyrazolate (KMe₂pz). These uranium clusters contain Me₂pz and 4-ketimidopent-2-en-2-imide ligands, the latter of which arises from pyrazolate N–N bond activation.

In the course of our research relating to atomic layer deposition (ALD) film growth precursors containing pyrazolate ligands and the ALD growth of mid-valent transition-metal oxide and nitride films, we sought to prepare mid-oxidation-state niobium and tantalum compounds that contain pyrazolate ligands and that might serve as ALD precursors for MO₂ films. Herein, we report the unexpected finding that 3,5-di-tert-butylpyrazolate (tBu₂pz) N–N bonds undergo two-electron oxidative addition on a putative niobium(III) center to afford a niobium(V) complex that contains the 2,2,6,6-tetramethyl-5-ketimidohept-3-en-3-imide (tmkh³⁻) ligand (Chart 1). On niobium(V) and tantalum(IV) ions, tBu₂pz N–N bond cleavage is also observed, along with hydrogen atom abstraction by the 5-ketimide nitrogen atom, to afford hydrogen-substituted tmkh⁻ ligands (Chart 1) supported on niobium(V) and tantalum(V) centers. These new complexes provide the first examples of pyrazolate N–N bond cleavage at single metal centers and also constitute the first examples of planar metallapyrimidines and metallapyrimidiniums. The aromaticity of the metallacycles is probed by variable-temperature NMR spectroscopy and theoretical calculations.

Treatment of NbCl₄(THF)₂ with 2 equiv of 4-tert-butylpyridine (4-tBupy) in THF, followed by addition of 3 equiv of KtBu₂pz, led to the isolation of 1 as deep red crystals (Scheme 1). Presumably, the 4-tBupy displaces the coordinated MO₂ ligands. In THF, we report the unexpected finding that 3,5-di-tert-butylpyrazolate (tBu₂pz) N–N bonds undergo two-electron oxidative addition on a putative niobium(III) center to afford a niobium(V) complex that contains the 2,2,6,6-tetramethyl-5-ketimidohept-3-en-3-imide (tmkh³⁻) ligand (Chart 1). On niobium(V) and tantalum(IV) ions, tBu₂pz N–N bond cleavage is also observed, along with hydrogen atom abstraction by the 5-ketimide nitrogen atom, to afford hydrogen-substituted tmkh⁻ ligands (Chart 1) supported on niobium(V) and tantalum(V) centers. These new complexes provide the first examples of pyrazolate N–N bond cleavage at single metal centers and also constitute the first examples of planar metallapyrimidines and metallapyrimidiniums. The aromaticity of the metallacycles is probed by variable-temperature NMR spectroscopy and theoretical calculations.

Chart 1. Structures of tmkh⁻ and tmkh²⁻ Ligands

MO₂ films. Herein, we report the unexpected finding that 3,5-di-tert-butylpyrazolate (tBu₂pz) N–N bonds undergo two-electron oxidative addition on a putative niobium(III) center to afford a niobium(V) complex that contains the 2,2,6,6-tetramethyl-5-ketimidohept-3-en-3-imide (tmkh³⁻) ligand (Chart 1). On niobium(V) and tantalum(IV) ions, tBu₂pz N–N bond cleavage is also observed, along with hydrogen atom abstraction by the 5-ketimide nitrogen atom, to afford hydrogen-substituted tmkh⁻ ligands (Chart 1) supported on niobium(V) and tantalum(V) centers. These new complexes provide the first examples of pyrazolate N–N bond cleavage at single metal centers and also constitute the first examples of planar metallapyrimidines and metallapyrimidiniums. The aromaticity of the metallacycles is probed by variable-temperature NMR spectroscopy and theoretical calculations.

Treatment of NbCl₄(THF)₂ with 2 equiv of 4-tert-butylpyridine (4-tBupy) in THF, followed by addition of 3 equiv of KtBu₂pz, led to the isolation of 1 as deep red crystals (Scheme 1). Presumably, the 4-tBupy displaces the coordinated MO₂ ligands. In THF, we report the unexpected finding that 3,5-di-tert-butylpyrazolate (tBu₂pz) N–N bonds undergo two-electron oxidative addition on a putative niobium(III) center to afford a niobium(V) complex that contains the 2,2,6,6-tetramethyl-5-ketimidohept-3-en-3-imide (tmkh³⁻) ligand (Chart 1). On niobium(V) and tantalum(IV) ions, tBu₂pz N–N bond cleavage is also observed, along with hydrogen atom abstraction by the 5-ketimide nitrogen atom, to afford hydrogen-substituted tmkh⁻ ligands (Chart 1) supported on niobium(V) and tantalum(V) centers. These new complexes provide the first examples of pyrazolate N–N bond cleavage at single metal centers and also constitute the first examples of planar metallapyrimidines and metallapyrimidiniums. The aromaticity of the metallacycles is probed by variable-temperature NMR spectroscopy and theoretical calculations.

Scheme 1. Structures of tmkh⁻ and tmkh²⁻ Ligands

N–N bond cleavage is also observed, along with hydrogen atom abstraction by the 5-ketimide nitrogen atom, to afford hydrogen-substituted tmkh⁻ ligands (Chart 1) supported on niobium(V) and tantalum(V) centers. These new complexes provide the first examples of pyrazolate N–N bond cleavage at single metal centers and also constitute the first examples of planar metallapyrimidines and metallapyrimidiniums. The aromaticity of the metallacycles is probed by variable-temperature NMR spectroscopy and theoretical calculations.

Supporting Information

Received: June 1, 2012
Published: June 26, 2012
THF ligands from NbCl₄(THF)₂ to afford NbCl₄(4-tBupy)₂, which is more soluble and facilitates the reaction. Analogous treatment of TaCl₄(4-tBupy)₂ with 3 equiv of KtBu₂pz afforded 2 upon workup as yellow crystals (Scheme 1). Treatment of MCl₄(4-tBupy)₂ with 4 equiv of KtBu₂pz in refluxing THF for 7 days did not lead to displacement of the remaining chloride ion, and only 1 and 2 were isolated in yields similar to those observed with 3 equiv of KtBu₂pz. Treatment of NbCl₄(THF)₂ with Na/Hg in the presence of 4-tBupy (3 equiv) and KtBu₂pz (3 equiv) in diethyl ether for 48 h afforded 3 as deep red crystals upon workup (Scheme 2). This reaction may proceed by formation of NbCl₃(4-tBupy)₃ and subsequent KtBu₂pz salt metathesis or via Nb(IV) pyrazolate species that are reduced by Na/Hg. Complex 3 differs formally from 1 by addition of HCl. Hence, 3 is a metallapyrimidinium, whereas 1 and 2 are metallapyrimidininiums. Complexes 1–3 were identified by ¹H NMR, ¹³C{¹H} NMR, and infrared spectroscopy, CHN microanalyses, and X-ray crystallography, as described below. The ¹H and ¹³C{¹H} NMR spectra of 1–3 showed the expected resonances for two η²-tBu₂pz ligands and one tmkh²⁻ (1, 2) or tmkh⁴⁻ (3) ligand. In the ¹H NMR spectra, 1–3 each exhibit one tert-butyl singlet for two equivalent tBu₂pz ligands between δ 1.33 and 1.42 and also show a singlet between δ 6.17 and 6.52 for two chemically equivalent pyrazolate ring core hydrogen atoms. The tmkh²⁻ (1, 2) and tmkh⁴⁻ (3) ligands in 1–3 each show two resonances between δ 0.97 and 1.17 for the two types of tert-butyl groups and singlets between δ 5.86 and 5.97 for the ligand core hydrogen atoms. Additionally, 1 and 2 have N–H resonances at δ 9.85 and 9.28, respectively. To probe the origin of the N-bound hydrogen atom in 1 and 2, the synthesis of 1 was repeated in 99.8% THF-d₈. Workup, followed by ¹H NMR analysis, indicated an 81% reduction in the integration of the N–H hydrogen atom resonance at δ 9.85. This experiment is consistent with the THF solvent as the predominant source of the nitrogen-bound hydrogen atoms in 1 and 2. The infrared spectra of 1 and 2 show weak N–H stretches at 3337 and 3347 cm⁻¹, respectively. A similar N–H stretch is absent in the infrared spectrum of 3.
distances within the tmkh$_2$- and tmkh$_3$-ligand cores of 1 and 3. The formal single and double bonds within the ligand C$_2$N$_2$ cores are shorter and longer, respectively, than those expected for isolated C−N (1.46 Å), C−C (2.12 Å) and C=C (1.52 Å) bonds. Since the Nb$_2$N$_2$C$_3$ core atoms are coplanar to within 0.151 (1) and 0.034 Å (3) and formally contain six π electrons, these values may indicate some delocalization and possible aromatic character.

Separate 1H NMR resonances were observed for the tmkh$_3$- tert-butyl groups in 3 up to 90 °C in toluene-d_6, and these resonances remained sharp at all temperatures. Observation of two separate tert-butyl resonances for the tmkh$_3$- ligand in 3 does not support aromatic character for this fragment, since it implies that π delocalization is not present. To assess the aromaticity quantitatively, nucleus-independent chemical shift (NICS) calculations were performed.12,13 NICS measures the chemical shifts of ghost atoms placed in the ring plane or above the cyclic π-electron clouds; negative NICS values indicate aromatic fragments, whereas positive NICS values denote antiaromatic species.14 Both the isotropic and perpendicularly chemical shift tensor components were evaluated by placing the ghost atom 1 Å above the centers (NICS(1)) of the pyrazolate and NbN$_2$C$_3$ rings. The computed NICS(1)$_{iso}$ and NICS(1)$_{zz}$ values are shown in Table 1 and predict that the pyrazolate rings are more aromatic than the NbN$_2$C$_3$ rings in 1 and 3 and are in qualitative agreement. The more reliable NICS(1)$_{zz}$ metric,2,15 however, shows considerably smaller values for the NbN$_2$C$_3$ rings (1, −5.5; 3, −9.9) in comparison to the pyrazolate rings (−25). For comparison, the NICS(1)$_{zz}$ value for pyridine is −26.6, which is similar to the values for the pyrazolate ligands in 1 and 3. Hence, the pyrazolate ligands in 1 and 3 are about as aromatic as pyridine, the NbN$_2$C$_3$ rings are only weakly aromatic, and the NbN$_2$C$_3$ ring in 1 is less aromatic than that in 3, consistent with the observation of more bond localization in 1 in comparison to 3. In the osmapyridine complex Os(CH$_3$P$_3$)CPhMeNCI$_2$(PH$_3$)$_2$, the Os−C and Os−N bond lengths (1.968(8), 1.974(6) Å) are similar and the C−C and C−N bond lengths within the ligand core are between single- and double-bond lengths, consistent with an aromatic ring.25 In addition, NICS calculations suggested that the osmapyridine fragment is similar to pyridine in its aromatic character.54

In conclusion, we have demonstrated the oxidative addition of bBu$_2$pz−N−N bonds to niobium(III), niobium(IV), and tantalum(IV) ions to afford complexes that contain planar metallapyrimidine and metallapyrimidinium groups. In the case of 3, direct two-electron oxidative addition may occur to afford the tmkh$_3$- ligand in 3, although the mechanistic path is not clear at this point. With niobium(IV) and tantalum(IV), one-electron oxidative addition is coupled with hydrogen atom abstraction from THF solvent to afford tmkh$_2$- ligands. Pyrazolate oxidative addition reactions should occur at many other low- and mid-valent single metal centers, and this approach may constitute a general method for the preparation of complexes containing metallapyrimidine and metallapyrimidinium groups. Additionally, oxidative addition reactions employing other anionic nitrogen heterocycles such as 1,2,4-triazolate, 1,2,3-triazolate, and tetrazole ions may lead to thus far unknown examples of metallatrazines, metallatetrazines, and protonated versions thereof. The present work complements previous studies describing the cleavage of aromatic bonds in several neutral nitrogen heterocycles by low- and mid-valent early- to middle-transition-metal complexes.$^{14c−e,15}$

Finally, we note that metal complexes containing β-diketiminate ligands formally resemble doubly alkylated pyridinium ions.16 However, most of the β-diketiminate MN$_2$C$_3$ rings are nonplanar and lack a formal metal−nitrogen double bond, and NICS calculations of late-transition-metal complexes with related chelates suggest that few metallacyclic structures are aromatic.17

ASSOCIATED CONTENT

Supporting Information

Text, a table, and CIF files giving synthetic procedures and analytical and spectroscopic data for 1−3, X-ray crystallographic data for 1−3, and details of the computational study. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: chw@chem.wayne.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was funded by Grant Nos. CHE-0910475 (to C.H.W.) and CHE-0910858 (to H.B.S.) from the U.S. National Science Foundation.

REFERENCES

