Computational Prediction of One-Electron Reduction Potentials and Acid Dissociation Constants for Guanine Oxidation Intermediates and Products

Brian T. Psciuk and H. Bernhard Schlegel*

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

* Supporting Information

ABSTRACT: Reduction potentials and pKₐ values were calculated for intermediates and products along three major pathways for guanine oxidation using the B3LYP and CBS-QB3 levels of theory with the SMD implicit solvation model. N-methylated nucleobases were used as models for nucleoside species. Ensemble averaged reduction potentials at pH 7 (E₇) were obtained by combining calculated standard reduction potentials with calculated pKₐ values in addition to accounting for tautomerization energies. Calculated pKₐ values are reasonable based on experimental estimates and chemical intuition. Pathway A leads to guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). The first step is the oxidation of 8-oxoguanine which proceeds by the loss of an electron followed by the loss of two protons and loss of another electron, yielding 8-oxopurine. The calculated E₇ values for the remaining intermediates and products are at least 0.3 V higher than that of guanine, indicating that further oxidation of these species is unlikely. Pathway B leads to two formamidopyrimidine isomers (FAPyG and 2,5FAPyG). Species along this pathway have calculated reduction potentials that are much lower than the oxidation potential for guanine and would likely be very short-lived in an oxidatively stressed environment. Pathway C leads to reduced spiroiminodihydantoin and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih). Similar to pathway A, the calculated reduction potentials for species along this pathway are at least 0.4 V higher than that of guanine.

INTRODUCTION

Ionizing radiation and reactive oxygen species are nearly constant sources of oxidative stress to the DNA of living organisms. Oxidative damage to DNA has been implicated in the process of aging, neurological diseases, carcinogenesis, and cellular death.¹⁻⁹ Among the canonical nucleobases, guanine is well-known to be the most susceptible to oxidative damage.¹⁰ Extensive research has been carried out over the last few decades to map the reaction pathways following guanine oxidation and to identify the major intermediates and products both experimentally⁴⁻¹⁷ and theoretically.¹⁸⁻²² The key intermediate and product species examined in this study are based on these experimental and theoretical findings. Figure 1 shows three significant reaction pathways that are available after the initial oxidation of guanine.

Determining the reduction potentials for nucleobase species has been a specific area of research interest to investigators studying oxidative damage to DNA. While there have been numerous experimental studies attempting to accurately measure a set of absolute reduction potentials for the canonical nucleic acid residues,¹⁰,²³⁻²⁹ the studies by Seidel et al.,²⁵ and Steenken et al.,²⁶,²⁷ are the most widely cited. Standard potentials (E°) for the canonical nucleosides were measured in acetonitrile solution by Seidel et al. using cyclic voltammetry. When the potentials in acetonitrile were measured, the possibilities for protonation/deprotonation events were eliminated and the redox pair was strictly between the reduced neutral and the oxidized radical cation. Measurements by Steenken et al. were made in aqueous solution at a specific buffered pH to obtain reduction potentials at a constant pH of 7 (E₇). Redox potentials were obtained by chemical oxidation and kinetic rate measurements of reference compounds reacting with the adenosine, guanosine, and 8-oxoguanosine nucleosides. Environmental factors can further...
complicate the interpretation of redox potentials in connection with oxidative damage to DNA. The redox potentials of guanine, guanosine, and guanosine monophosphate differ by 0.15 V.30 Phosphate groups can stabilize neighboring radicals by as much as 10 kcal/mol.31 Base stacking and pairing can change redox potentials by up to 0.3 V.32,33

In a previous publication, we developed a computational scheme34 that reliably reproduced the relative trends in the E° values measured by Seidel et al. and the E_7 values measured by Steenken et al. E° values were obtained from calculated solution phase Gibbs free energies for the redox reactions. E_7 values were computed using the Nernst half-cell equation, which takes into account the physiologically relevant acid dissociation constants (K_a) for each species in addition to the E° values. Because measured pK_a values were unavailable for many of the one-electron oxidized nucleic acid species, we calculated all the pK_a values needed for the reduced and oxidized species. Using the SMD implicit solvation model with solvent cavity scaling, we achieved good agreement between calculated and measured pK_a values and used the same solvent scaling parameters to reproduce the experimental trends for the E° and E_7 values of nucleosides. For the present study, we employ the same methodology to predict unknown pK_a and E_7 values for key intermediate and product species in the reaction pathways following guanine oxidation. These intermediate and product species may be transient and difficult to isolate experimentally. The thermodynamic properties of many of these species are currently unknown. Accurate prediction of these unknown values could help provide a better understanding of the reaction pathways and mechanisms of oxidative damage.

METHODS

A reduction potential under standard conditions is directly proportional to Gibbs free energy of the reaction under the same standard conditions. For a one-electron reduction of the radical cation $+\text{OH}^{+} + \text{H}^{+} \rightarrow \text{H}^{+} + \text{OH}^{-} + \text{e}^{-} \Delta *$, the standard reduction potential is

$$E^\circ_{\text{red(sol)}} = -\frac{\Delta G^\circ_{\text{red(sol)}}}{F}$$

where F is Faraday’s constant (23.06 kcal/mol). The Gibbs energy of reducing the radical cation species in solution

$$\Delta G^\circ_{\text{red(sol)}} = G_{(sol)}^\circ(B) - G_{(sol)}^\circ(B^{++}) - G_{(sol)}^\circ(e^-)$$

is calculated with the aid of a thermodynamic cycle shown in Scheme 1. The standard state Gibbs energy in solution

$$G_{(sol)}^\circ = (G_{(g)}^\circ + \Delta G_{1\text{atm} \rightarrow 1\text{M}}) + G_{\text{solv}}^\circ$$

Scheme 1. Thermodynamic Cycle Used in the Calculation of Reduction Potentials

is the sum of the standard state Gibbs energy in the gas phase $G_{(g)}^\circ$ and the standard state Gibbs energy of solvation G_{solv}° with an additional term, $\Delta G_{1\text{atm} \rightarrow 1\text{M}} = 1.89$ kcal/mol, for converting from the standard state concentration of 1 atm in the gas phase to the standard state concentration of 1 mol/L in the solution phase. Using the notation introduced by Ben-Naim and Marcus,35 the standard state at 1 atm is denoted by a degree symbol ($^\circ$) and the standard state at 1 mol/L is denoted by an asterisk (*). As outlined in Scheme 1, the Gibbs energy for the reduction reaction in solution is

$$\Delta G_{\text{red(sol)}}^\circ = (G_{(g)}^\circ(B) + \Delta G_{1\text{atm} \rightarrow 1\text{M}} + \Delta G_{\text{solv}}^\circ(B)) - (G_{(g)}^\circ(B^{++}) + \Delta G_{1\text{atm} \rightarrow 1\text{M}} + \Delta G_{\text{solv}}^\circ(B^{++})) - G_{(sol)}^\circ(e^-)$$

$\text{Figure 1. Key intermediates and products along three significant reaction pathways following guanine oxidation. Pathway A starts with the 9-methyl-8-oxoguanine (8oxoG) intermediate structure and leads to the spirominodihydantoin (Sp) and guanidinohydantoin (Gh) products. Pathway B goes through the hemiaminal intermediate and produces the formamidopyrimidine (FAPyG) products. Pathway C starts at 5-hydroxy-9-methylguanine (5OHG) and goes through the deoxospirominodihydantoin (Spred) intermediate and ends at the 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) product.}$
Experimental potentials are measured or referenced against a standard electrode and reported as relative half-cell potentials. To convert calculated absolute reduction potentials to standard reduction potentials, the estimated absolute potential of the standard hydrogen electrode (SHE = 4.281 V) is subtracted from the computed potential calculated using eq 2. Our previous investigation found that there were still systematic differences in the calculated potentials relative to the SHE compared to the measured potentials. In this study, all calculated potentials will be reported relative to the calculated guanine potential.

The calculated gas phase Gibbs energy is

\[G^\circ_{(g)} = E_{el} + ZPE + \Delta G^\circ_{0\rightarrow298K} \quad (6) \]

where \(E_{el} \) is the computed electronic energy including nuclear repulsion, ZPE the zero point vibrational energy, and \(\Delta G^\circ_{0\rightarrow298K} \) the calculated increase in the Gibbs energy from 0 to 298 K based on ideal gas approximations. Gas phase structures are optimized using the B3LYP hybrid density functional40−44 with the 6-31+G(d,p) basis set.45−50 Vibrational frequency calculations at this geometry are used to compute the ZPE and \(\Delta G^\circ_{0\rightarrow298K} \) energies. \(E_{el} \) is obtained from a single-point calculation with the larger aug-cc-pVTZ basis set51 using the gas phase optimized geometry. The computational procedure for obtaining the gas phase Gibbs energy is

\[G^\circ_{(g)} = E_{el}^{\text{B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d,p)}} + ZPE \]

\[+ \Delta G^\circ_{0\rightarrow298K} \quad (7) \]

A more accurate approach for computing gas phase Gibbs energies is also employed using the CBS-QB3 compound model chemistry,52,53 which has been shown to produce nearly chemically accurate gas phase thermodynamic energies (mean absolute error of 1.1 kcal/mol).

The Gibbs energy of solution for a given molecule is the difference between the solution phase Gibbs energy of a solution phase optimized molecule \((R) \) and the gas phase Gibbs energy of a gas phase optimized molecule \((R) \).

\[\Delta G^\circ_{\text{solv}} = G^\circ_{(sol)}(R) - G^\circ_{(g)}(R) \quad (8) \]

Solution phase Gibbs energies are computed at the B3LYP/6-31+G(d,p) level of theory using the SMD implicit solvation model.54 The SMD implicit solvation model54 includes electrostatic, cavitation, and dispersion energies. SMD uses the integral equation formalism of the polarizable continuum model (IEF-PCM)55−58 with a parametrized set of atomic radii to calculate the bulk electrostatic energy contribution. Solute−solvent short-range interactions are calculated using a modified solvent-accessible area with parameters for atomic and molecular surface tensions and hydrogen bond acidity and basicity. An average tesseract area of 0.2 Å\(^2\) is used for the tessellated solute−solvent boundary.

Combining the gas phase Gibbs energies with the SMD solvation Gibbs energies calculated yields the B3LYP solution phase Gibbs energies

\[G^\circ_{(sol)} = G^\circ_{el}^{\text{B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d,p)}} + ZPE^{\text{B3LYP/6-31+G(d,p)}} + \Delta G^\circ_{0\rightarrow298K} + \Delta G^\circ_{\text{SMD/SMD/6-31+G(d,p)}} \quad (9) \]

and the CBS-QB3 solution phase Gibbs energies

\[G^\circ_{(sol)} = G^\circ_{el}^{\text{CBS-QB3}} + \Delta G^\circ_{0\rightarrow1atm} + \Delta G^\circ_{\text{SMD/B3LYP/6-31+G(d,p)}} \quad (10) \]

All calculations in this study were performed with the development version of the Gaussian series of programs.59

Our previous study34 found that reliable relative reduction potentials and pK\(_a\) values could be computed using N-methylated nucleobases (N9 for pyrimidines and N1 for purines shown in Scheme 2) as models for nucleosides and nucleotides. While the effect of the sugar moiety on the absolute reduction potential for the nucleic acid species is debatable, the influence on the relative reduction potentials should be small because the valence molecular orbitals involved in the redox process are localized on the base. Because the hydroxyl groups of the sugar are deprotonated only under very basic conditions (\(\text{pH} > 12 \)), N-methylated nucleobases should also be good models for the protic equilibria of nucleosides near physiological pH.

For biological environments, the reduction potentials under standard conditions at \(\text{pH} 0 \), \(E^\circ_o \), are not as relevant as the reduction potentials at \(\text{pH} 7 \), \(E^\circ_7 \). The Nernst half-cell equation

\[E_{1/2} = E^\circ_o - \frac{RT}{F} \ln \left[\frac{[\text{Red}]}{[\text{Ox}]} \right] \quad (11) \]

can be used convert standard potentials to other conditions. For the reduction potential at \(\text{pH} 7 \) in aqueous solution, the equilibrium concentrations of the physiologically relevant protonation states must be obtained using the acid dissociation constants (\(K_a \)). Assuming dilute concentrations of the solute and low ionic strength, an example equation of a pH-dependent potential is60,61

\[E_{pH} = E^\circ(X^\ast, H^+/X) + \frac{RT}{F} \ln \left(\frac{K_{a1o}}{K_{a1r}} \right) \]

\[+ \frac{RT}{F} \ln \left(\frac{K_{a2o}K_{a2r} + K_{a2o}10^{-pH} + 10^{-2pH}}{K_{a2o} + 10^{-pH}} \right) \quad (12) \]

The standard redox pair in eq 12 involves a one-electron redox event and a change in protonation state where \(XH \) is the reduced neutral species. In a physiological environment where the \(\text{pH} \) of the aqueous solution is near 7, the neutral forms of the reduced and oxidized nucleobases tend to be dominant; therefore, the redox reaction for \(E^\circ \) is immediately followed by a proton transfer. The acid dissociation constants for the oxidized and reduced species are identified by subscripts “o” and “r”, respectively. The \(K_a \) subscript number indicates the ordering of the deprotonation events from acidic to basic; for example, the first physiologically relevant deprotonation event

\[\text{N9/O9} \]
for the reduced species of a given nucleobase is signified by K_{a1}. Further details about the derivation of eq 12 and additional discussions regarding pH-dependent potentials can be found in the literature.60,61

For most of the intermediate and product species along the guanine oxidation pathways, experimental measurements of pK_a values are not available. This is especially true for oxidized species. Because these pK_a values are required for evaluating the E_7 values, we calculated the relevant pK_a values for each of the intermediate and product species. Similar to reduction potentials, the pK_a values are directly proportional to the Gibbs energy for deprotonation:

$$pK_a = \frac{\Delta G_{\text{deprot}}^{\circ}(aq)}{2.303RT} \quad (13)$$

Scheme 3 describes the thermodynamic cycle used to calculate $\Delta G_{\text{deprot}}^{\circ}(aq)$. In the calculation of the Gibbs energy for aqueous deprotonation of a given species, HA,

\[
\begin{align*}
\Delta G_{\text{deprot}}^{\circ}(aq) & = \left(G_{\text{g}}^{\circ}(A^\bullet) + \Delta G_{\text{lam} \rightarrow 1\text{M}}^{\circ} + \Delta G_{\text{solv}}^{\circ}(A^\bullet) \right) \\
& + \left(G_{\text{g}}^{\circ}(H^\bullet) + \Delta G_{\text{lam} \rightarrow 1\text{M}}^{\circ} + \Delta G_{\text{solv}}^{\circ}(H^\bullet) \right) \\
& - \left(G_{\text{g}}^{\circ}(HA) + \Delta G_{\text{lam} \rightarrow 1\text{M}}^{\circ} + \Delta G_{\text{solv}}^{\circ}(HA) \right)
\end{align*}
\]

(14)

the aqueous solvation Gibbs energy of a proton is given by the literature value $\Delta G_{\text{solv}}^{\circ}(H^\bullet) = 265.9 \text{ kcal/mol}$.62

Nucleobases contain multiple sites for protonation or deprotonation. In an aqueous solvent environment, multiple tautomers of a given nucleobase will be present in equilibrium concentrations for both the reduced and oxidized species (Scheme 4).

Scheme 4. Multiple Tautomers Contribute to the Ensemble Reduction Potential

\[
\begin{align*}
\text{Ox}_i(f_i) & \leftrightarrow \text{Red}_i(f'_i) \\
\text{Ox}_j(f_j) & \leftrightarrow \text{Red}_j(f'_j)
\end{align*}
\]

To model experimental measurements in aqueous solution, all of the significantly populated tautomers must be taken into account. Using the Boltzmann populations for each tautomer

$$f_i = \frac{\exp \left(\frac{-\Delta G_{\text{solv}}^{\circ}(f_i)}{RT} \right)}{\sum_n \exp \left(\frac{-\Delta G_{\text{solv}}^{\circ}(f_n)}{RT} \right)} \quad \text{where} \quad \sum f_i = 1 \quad (15)$$

the ensemble averaged reduction potential is

$$E_{\text{red(solv)}}^{\circ} = E_{\text{red(solv)}}^{\circ} + \frac{RT}{F} \ln(f_i) - \frac{RT}{F} \ln(f'_i) \quad (16)$$

Figure 2. Calculated pK_a values and reduction potentials for 9-methylguanine (G). Where applicable, relative Gibbs free energy differences in kilocalories per mole (black) with the tautomers populations (black italics) are shown near individual tautomers. Tautomer specific pK_a values (red) are shown between individual isomers. Ensemble averaged pK_a values (red) are shown at the top and bottom of the figure. Ensemble oxidation potentials E^0 and E_7 (blue) are shown between the reduced and oxidized species on the right. Figures 3−15 report oxidation potentials relative to guanine (E^0_{rel} and E_7_{rel}). Experimentally measured values are shown in parentheses.

where $E_{\text{red(solv)}}^{\circ}$ is the tautomer specific reduction potential, f_i the population of the i-th tautomer of the oxidized species, and f'_j the j-th tautomer of the reduced species. Similarly, the ensemble pK_a value is

$$pK_a = pK_a^{\circ} - \log(f_i) + \log(f'_j) \quad (17)$$

where pK_a° is the tautomer specific pK_a and f_i is the population of the species that is protonated relative to the deprotonated species that has a population f'_j.

For the tautomeric sampling, as many as four low-energy tautomers were examined for each reduced and oxidized species; though in most cases, only one or two tautomers needed to be considered. Tautomers that included
protonated amino groups (e.g., −NH$_3^+$) and enol forms of keto structures were typically found to be much higher in energy and were not included in the tautomeric sampling. Multiply charged species were not considered because they are unlikely to be relevant.

Our previous study34 found that standard implicit solvent methods were not sufficiently accurate for redox and pK_a calculations because of specific solvent interactions with charged solutes. To overcome these inaccuracies in solvation modeling, we scaled the solute cavity for charged species to obtain a best fit between our calculated pK_a values and well-established experimentally measured pK_a values for the nucleobases. Cavity scaling parameters for B3LYP were 1.00 for cations and 0.90 for anions; the scaling parameters for CBS-QB3 were 0.975 for cations and 0.925 for anions; cavities for neutral molecules were not scaled. Because the guanine oxidation pathway intermediate and product species are sufficiently similar to the canonical nucleobases from the previous study, we used the same cavity scaling parameters for all the species in this study.

RESULTS AND DISCUSSION

Details of the present calculations of pK_a values and reduction potentials of the intermediates and products along the guanine oxidation pathways are presented in Figures 2−15, and are summarized in Table 1. The calculated pK_a values for guanine (pK_{a1} 3.20, pK_{a2} 9.34 at B3LYP and pK_{a1} 3.46, pK_{a2} 9.17 at CBS-QB3)34,33,38,32,31,30 are in excellent agreement with other calculated values (pK_{a1} 3.4,63 3.15; pK_{a2} 9.6,63 9.6064) and experimental measurements (pK_{a1} 3.1, pK_{a2} 9.5).65 Similarly, our calculated pK_a values for oxidized guanine (pK_{a1} ox 3.34, Table 1. Calculated Reduction Potentials and pK_a values for Reactant, Intermediate, and Product Species Using B3LYP and CBS-QB3 Methodologies

<table>
<thead>
<tr>
<th>species</th>
<th>methodology</th>
<th>pK_{a1}</th>
<th>pK_{a2}</th>
<th>$pK_{a1\text{ox}}$</th>
<th>$pK_{a2\text{ox}}$</th>
<th>E°_{rel}</th>
<th>E^7_{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>B3LYP</td>
<td>3.20</td>
<td>9.34</td>
<td>3.34</td>
<td>10.78</td>
<td>0.00 (1.37)a</td>
<td>0.00 (0.96)a</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>3.46</td>
<td>9.17</td>
<td>2.43</td>
<td>12.14</td>
<td>0.00 (1.36)a</td>
<td>0.00 (0.95)a</td>
</tr>
<tr>
<td>8oxoG</td>
<td>B3LYP</td>
<td>−0.12</td>
<td>8.13</td>
<td>−0.28</td>
<td>5.50</td>
<td>−0.45</td>
<td>−0.56</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>0.01</td>
<td>7.19</td>
<td>0.05</td>
<td>4.97</td>
<td>−0.41</td>
<td>−0.53</td>
</tr>
<tr>
<td>8oxoP</td>
<td>B3LYP</td>
<td>−0.04</td>
<td>7.52</td>
<td>−1.92</td>
<td>+1.13</td>
<td>+1.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>1.21</td>
<td>8.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5OH$_8$OG</td>
<td>B3LYP</td>
<td>2.56</td>
<td>6.05</td>
<td>2.31</td>
<td>1.17</td>
<td>+0.77</td>
<td>+0.83</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>3.75</td>
<td>6.69</td>
<td>5.23</td>
<td>0.69</td>
<td>+1.08</td>
<td>+1.15</td>
</tr>
<tr>
<td>gem-diol</td>
<td>B3LYP</td>
<td>7.40</td>
<td>6.69</td>
<td>1.48</td>
<td>5.07</td>
<td>+0.44</td>
<td>+0.48</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>8.33</td>
<td>7.89</td>
<td>5.53</td>
<td>5.85</td>
<td>+0.70</td>
<td>+0.78</td>
</tr>
<tr>
<td>4-carboxyGh</td>
<td>B3LYP</td>
<td>−2.59</td>
<td>6.07</td>
<td>3.88</td>
<td>9.11</td>
<td>+1.06</td>
<td>+1.11</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>−0.44</td>
<td>6.66</td>
<td>7.61</td>
<td>7.81</td>
<td>+1.25</td>
<td>+1.23</td>
</tr>
<tr>
<td>Gh</td>
<td>B3LYP</td>
<td>6.11</td>
<td>9.58</td>
<td>2.29</td>
<td>7.60</td>
<td>+0.38</td>
<td>+0.38</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>7.77</td>
<td>9.14</td>
<td>0.70</td>
<td>9.89</td>
<td>+0.44</td>
<td>+0.49</td>
</tr>
<tr>
<td>Sp</td>
<td>B3LYP</td>
<td>−0.06</td>
<td>2.64</td>
<td>−0.26</td>
<td>0.53</td>
<td>+0.53</td>
<td>+0.78</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>1.32</td>
<td>3.30</td>
<td>−0.74</td>
<td>−0.32</td>
<td>+0.72</td>
<td>+0.93</td>
</tr>
<tr>
<td>hemiaminal</td>
<td>B3LYP</td>
<td>2.62</td>
<td>9.53</td>
<td>5.45</td>
<td>13.59</td>
<td>−0.84</td>
<td>−0.84</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>2.49</td>
<td>7.92</td>
<td>6.16</td>
<td>11.02</td>
<td>−0.75</td>
<td>−0.75</td>
</tr>
<tr>
<td>FAPyG</td>
<td>B3LYP</td>
<td>3.29</td>
<td>9.06</td>
<td>5.41</td>
<td>8.08</td>
<td>−0.32</td>
<td>−0.32</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>3.66</td>
<td>8.40</td>
<td>6.58</td>
<td>8.08</td>
<td>−0.24</td>
<td>−0.25</td>
</tr>
<tr>
<td>2,5FAPyG</td>
<td>B3LYP</td>
<td>2.77</td>
<td>7.40</td>
<td>4.11</td>
<td>8.61</td>
<td>−0.54</td>
<td>−0.54</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>3.10</td>
<td>7.04</td>
<td>4.43</td>
<td>8.58</td>
<td>−0.43</td>
<td>−0.42</td>
</tr>
<tr>
<td>SOH$_8$G</td>
<td>B3LYP</td>
<td>2.77</td>
<td>8.03</td>
<td>4.11</td>
<td>+0.81</td>
<td>+0.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>3.69</td>
<td>9.44</td>
<td>4.81</td>
<td>+1.05</td>
<td>+1.05</td>
<td></td>
</tr>
<tr>
<td>Sp$_{red}$</td>
<td>B3LYP</td>
<td>0.49</td>
<td>7.40</td>
<td>6.72</td>
<td>+0.45</td>
<td>+0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>1.40</td>
<td>7.12</td>
<td>6.02</td>
<td>+0.61</td>
<td>+0.62</td>
<td></td>
</tr>
<tr>
<td>2Ih</td>
<td>B3LYP</td>
<td>0.95</td>
<td>8.49</td>
<td>−2.35</td>
<td>5.85</td>
<td>+0.58</td>
<td>+0.58</td>
</tr>
<tr>
<td></td>
<td>CBS-QB3</td>
<td>2.40</td>
<td>8.18</td>
<td>−4.58</td>
<td>5.55</td>
<td>+0.69</td>
<td>+0.69</td>
</tr>
</tbody>
</table>

aNumbers in parentheses are for reduction potentials referenced to SHE.
pK\textsubscript{a,ox} (10.78) are also in excellent agreement with calculated (pK\textsubscript{a,ox} 4.0166) and experimental values (pK\textsubscript{a1,ox} 3.967, pK\textsubscript{a2,ox} 10.934). The contributing tautomers were also consistent with those found experimentally, where the pK\textsubscript{a1,ox} is a deprotonation at the N7 position, the pK\textsubscript{a2,ox} and pK\textsubscript{a2,ox} are deprotonations from the N1 position, and the pK\textsubscript{a2,ox} is a deprotonation from the N2 amino group.

Guanine is the most easily oxidized of the canonical nucleobases. The most widely cited value for guanine is 1.29 V26 obtained by Steenken from chemical oxidation and kinetic rate measurements on the nucleoside in aqueous solution. By contrast, Faraggi et al.24 measured 1.06 V for 1-methylguanine by cyclic voltammetry. Our calculations on 9-methyl guanine at the CBS-QB3 and B3LYP levels of theory yield 0.95 and 0.96 V. As discussed in our previous study,34 better agreement between computed and experimental values can be obtained for reduction potential differences between the nucleobases than for reduction potentials relative to SHE. The computations have difficulty in obtaining accurate estimates of solvation energies for ionic species; the experiments are hampered by problems with solubility and irreversibility; environmental effects routinely shift the redox potentials. When differences are taken, many of these systematic biases cancel. For example, the calculated difference between the reduction potentials of methyl-substituted guanine and 8-oxoguanine (−0.53 V at CBS-QB3 and −0.56 V at B3LYP) is in very good agreement with experiment for guanosine and 8-oxoguanosine (−0.55 V).26,27 Therefore, discussion of reduction potentials in this study will be based on values relative to the reduction potential of guanine at pH 7, and are denoted as E\textsubscript{r,rel}. Because all reduction potentials and pK\textsubscript{a} values were computed using two theoretical methods, the numbers are reported as a range of values in the discussion.

Following the initial oxidation of guanine, three significant reaction pathways are considered in the present study, identified as A, B, and C in Figure 1. Key intermediates and products were chosen based on pathways deduced from experimental investigations4,7,11,13 and computational investigations of the energetics of the guanine oxidation reaction pathways (for leading computational references, see work by Wetmore et al.19 and by Munk et al.20–22).

Pathway A. This pathway starts with 9-methyl-8-oxoguanine (8oxoG), which can be formed by the attack of a reactive oxygen species at the C8 position of guanine (G). As shown in Table 1 and Figure 3, the calculated pK\textsubscript{a} values of 8oxoG (pK\textsubscript{a1} −0.12, pK\textsubscript{a2} 8.13, pK\textsubscript{a1,ox} −0.28, and pK\textsubscript{a2,ox} 5.50)34 are in good agreement with experimental measurements (pK\textsubscript{a1,ox} 0.168, pK\textsubscript{a2,ox} 8.669 and pK\textsubscript{a2,ox} 6.670) and other calculated results (pK\textsubscript{a1,ox} −0.465, pK\textsubscript{a2,ox} 8.663, pK\textsubscript{a1,ox} 0.2269, and pK\textsubscript{a2,ox} 8.6973). Ring nitrogen atoms in cationic 8oxoG are all protonated, and the first deprotonation occurs at the N3 position. The reduced neutral and radical cation species are identical isomers, but deprotonation for pK\textsubscript{a1} occurs at N1 while deprotonation for pK\textsubscript{a2,ox} occurs at N7. The pK\textsubscript{a2,ox} involves the deprotonation of the last protonated ring nitrogen at N1. Our calculated E\textsubscript{r} value for 8oxoG is 0.53−0.56 V lower than that for G34 in very good agreement with the experimental difference in reduction potentials (0.55 V).26,27 Although 8oxoG is a stable intermediate along the path, its low reduction potential relative to G indicates that 8oxoG can easily undergo further oxidation. At pH7, the oxidation of the canonical nucleobases is accompanied by the loss of a proton. The calculated pK\textsubscript{a} values for oxidized 8oxoG show that it will lose not just one proton but also a second proton to form the radical anion at physiological pH. Loss of an additional electron from oxidized 8oxoG yields 2-amino-6,8-dioxo-9-methylpurine (8oxoP). The calculated reduction potential of oxidized 8oxoG is 0.35−0.44 V lower than that of G. This indicates the oxidation of 8oxoG to 8oxoP can occur readily by the removal of an electron, followed by the loss of two protons and then removal of one more electron.

The pK\textsubscript{a} values for 8oxoP (Figure 4) are very similar to those of 8oxoG: pK\textsubscript{a1} 0.0−1.2, pK\textsubscript{a2} 7.5−8.2, and pK\textsubscript{a1,ox} ca. −2. However, the protonation sites of 8oxoP differ from 8oxoG: for pK\textsubscript{a1,ox} deprotonation takes place at N1, while for pK\textsubscript{a2} and pK\textsubscript{a1,ox} it occurs at the exocyclic N2 amino position. The CBS-QB3 calculations of pK\textsubscript{a1,ox} and the reduction potentials are unreliable because of severe spin contamination. Because 8oxoP has already been oxidized twice from 8oxoG, the reduction potential is expected to be comparatively high, and further oxidation is unlikely. The calculated E\textsubscript{r} of 8oxoP is 1.1 V higher...
than that of guanine and 0.4 V higher than the calculated E° of uracil, which has the highest reduction potential of the canonical nucleobases. The next step on the reaction pathway involves the addition of water across the C4$^-\text{N7}$ bond of 8oxoP, leading to the 5-hydroxy-9-methyl-8-oxoguanine (5OH8OG) intermediate. This step is calculated to have a reaction Gibbs energy of ca. $\sim 5\text{ to } +1\text{ kcal/mol}$.

SOH8OG is a key intermediate step along pathway A for guanine oxidation where a pH-dependent bifurcation of the reaction path takes place. A recent study by Burrows and co-workers investigating the environmental effects on the guanine oxidation pathway inferred a pK_a of ~ 5.7 for the 5OH8OG nucleoside based on product yield ratios. This pK_a is the critical factor in determining that the reaction proceeds to guanidinohydantoin (Gh) under acidic conditions (pH < 5.7) and to spiroiminodihydantoin (Sp) under neutral to basic conditions (pH > 5.7). In a theoretical study detailing the energetics of guanine oxidation pathways, Munk et al. found that the lowest energy route for converting 8oxoG to Sp involved an initial deprotonation of neutral 5OH8OG followed by the migration the C6$^-\text{O6}$ acyl group from C5 to C4. Figure 5 shows that 5OH8OG protonates at N1 with a pK_a of 2.56–3.75, which is similar to the first protonation of guanine. The computed pK_a of 6.05–6.69 is in good agreement with 5.7 deduced by Burrows, and supports both the experimental and calculated results that the conversion of 5OH8OG to Sp occurs under neutral to basic conditions. Acyl migration converts deprotonated SOH8OG to deprotonated Sp and is exothermic by ca. 24–25 kcal/mol. Under mildly acidic conditions, SOH8OG is uncharged. The addition of water to the C6 carbonyl generates the gem-diol intermediate on the pathway toward Gh. The formation of the gem-diol from SOH8OG is endothermic by ca. 12–22 kcal/mol for the neutral case and ca. 6–15 kcal/mol for the N1 protonated case.

The estimation of E° of SOH8OG requires the pK_a values of the oxidized species. Two tautomers of the radical cation of SOH8OG are within 3 kcal/mol energetically for each level of theory (however, B3LYP and CBS-QB3 differ in the preferred site of protonation). Only zwitterion structures could be optimized for the neutral radical, and both levels of theory agree that N1 is protonated (optimization of nonzwitterionic structures of the neutral radical in the gas phase resulted in ring-opening at the C5–C6 bond). The B3LYP level of theory predicts a pK_a of 2.31, which is similar to the pK_a of guanine. The calculated E° value for SOH8OG is 0.83–1.15 V higher than that of guanine, and thus SOH8OG is not susceptible to further oxidation. Addition of water to the C6–O6 carbonyl of SOH8OG is endothermic by ca. 12–22 kcal/mol and yields the gem-diol intermediate (Figure 6). The gem-diol intermediate prefers a cationic state as reflected by the unusually high pK_a of 7.40–8.33 involving an N1 deprotonation. The calculated pK_a of 6.69–7.89 and is predicted to be lower than the calculated pK_a. The deprotonation associated with pK_a leads to four tautomers.
that are very similar in energy. The calculated pK\textsubscript{a} values for the oxidized gem-diol are 1.48–5.53 for pK\textsubscript{a1 ox} and 5.07–5.85 for pK\textsubscript{a2 ox}. The gem-diol has a calculated E\textsubscript{7} which is 0.48–0.78 V higher than that of guanine, indicating further oxidation is unlikely.

The next step on pathway A toward Gh is a ring-opening and proton transfer, converting the gem-diol to the 4-carboxy-9-methylguanidinohydantoin (4carboxyGh) intermediate. This step is 15–23 kcal/mol exothermic for the neutral species. Neutral 4carboxyGh (Figure 7) is a zwitterion with a negatively charged carboxylate and a positively charged guanidine group. Protonation occurs at the carboxyl group with a calculated pK\textsubscript{a1} of −0.44 to −2.59. Deprotonation occurs at N7 of the neutral species with a pK\textsubscript{a2} of 6.07–6.66, and the guanidine group is predicted to remain positively charged. Deprotonation of the radical cation at the 4-hydroxyl group has a pK\textsubscript{a1 ox} of 3.88–7.61, and deprotonation of the neutral radical at the guanidine group has a pK\textsubscript{a2 ox} of 7.81–9.11. This leads to a nominal E\textsubscript{7} value that is ca. 1.11–1.23 V higher than that of guanine. However, deprotonation of the carboxyl group in any of the 4carboxyGh radical species leads to decarboxylation. The E\textsubscript{7} for the oxidative process including decarboxylation to give oxidized neutral Gh is 0.01–0.10 V lower than E\textsubscript{7} for G.

Decarboxylation of 4carboxyGh and tautomerization produces guanidinohydantoin (Gh), and is exothermic by ca. 30 kcal/mol. For neutral Gh (Figure 8), the zwitterion is 3.6–5.1 kcal/mol more stable than the other tautomers. Deprotonation of the guanidine group has a pK\textsubscript{a1} of 6.11–7.77, and deprotonation of the hydantoin group has a pK\textsubscript{a2} of...
9.14−9.58. There is no mention of any experimental measurements for the pK_a values of Gh in the literature. The pK_a values of guanidines can vary significantly with substituents (e.g., guanidine pK_a 13.7,71 acetylguanidine pK_a 8.3 (experimental72) versus 8.5 (present calculations)) but the pK_a values of substituted hydantoins fall in a much narrower range (pK_a 8−10).73−75 The calculated pK_a1 ox of 0.70−2.29 can be compared to pK_a1 ox values computed for guanine (2.53−3.34), 4carboxyGh (3.88−7.61), and SOH8OG (2.31−5.23). Oxidized Gh is predicted to be neutral at pH 7, and \(E_7 \) is calculated to be 0.38−0.49 V higher than that of guanine.

As summarized in Figure 9, Sp is readily deprotonated, with pK_a1 −0.06 to 1.32 and pK_a2 2.64−3.30. The values are in agreement with those calculated by Verdolino et al. (pK_a1 0.5 and pK_a2 4.8).63 However, they pointed out that a pK_a2 of 4.8 is "surprisingly low for a substituted hydantoin."63 They attribute the low pK_a2 value to through-space interactions of the C6 carbonyl group (confirmed by replacing C6−O6 with C=N and CH2) and greater solvent stabilization of the N7 anion (tautomers with an N7 anion have a dipole moment of 15−20 debye compared to 5−15 debye for other tautomers).63 The present calculations may underestimate pK_a2, and a better treatment of solvent effects may be needed. Verdolino et al. have estimated the pK_a of Sp to be around 7. The calculated pK_a values of oxidized Sp are probably also too low because of similar effects described above for the pK_a2. Oxidized Sp is most likely an anion at pH 7, and \(E_7 \) is calculated to be 0.78−0.93 V higher than that of guanine.

Pathway B. A key intermediate on the pathway to FAPyG is 2-amino-8-hydroxy-9-methyl-1,7,8-trihydropurin-6-one (hemiaminal), shown in Figure 10. The pK_a values of the hemiaminal (pK_a1 2.49−2.62, pK_a2 7.92−9.53) are similar to the pK_a values of guanine (pK_a1 3.20−3.50, pK_a2 9.10−9.34). All the ring nitrogens are protonated in the cation species, and the pK_a1 corresponds to a deprotonation at N3. The next deprotonation for the pK_a2 occurs at N1. The pK_a1 ox of the radical cation involves a deprotonation at the N7 position. Under very basic conditions, the neutral radical is predicted to deprotonate at the N1 position. The hemiaminal intermediate is very readily oxidized, and its \(E_7 \) value is 0.75−0.84 V lower than that of guanine. The hemiaminal intermediate is even more susceptible to oxidation than is 8oxoG. Tautomers with the C8-hydroxyl species deprotonated were difficult to obtain as many of the optimizations progressed toward ring-opening. Ring-opening at the C8−N9 bond of the hemiaminal and tautomerism leads to 2,6-diamino-(N-methyl)-5-formamido-4-hydroxyprymidine (FAPyG) and is exothermic by ca. 9−11 kcal/mol. Breaking the N7−C8 bond followed by tautomerism yields 2,5-diamino-(N-methyl)-6-formamido-4-hydroxyprymidine (2,5FAPyG) and is exothermic by ca. 4−6 kcal/mol.

The pK_a values for FAPyG (Figure 11) and 2,5FAPyG (Figure 12) are similar to one another in addition to being
similar to the pK\textsubscript{a} values of guanine. FAPyG and 2,5FAPyG are protonated under acidic conditions on the N1 position of the pyrimidine ring with calculated pK\textsubscript{a1} values of 3.29–3.66 and 2.77–3.10, respectively. Neutral FAPyG and 2,5FAPyG deprotonate from the N3 position with calculated pK\textsubscript{a2} values of 8.40–9.06 and 7.04–7.40, respectively. The calculated 2,5FAPyG pK\textsubscript{a2} indicates a significant concentration of the anion should be present under physiological conditions. The radical cation species for FAPyG and 2,5FAPyG deprotonate at the N3 position with pK\textsubscript{a1 ox} values of 5.41–6.58 and 4.11–4.43, respectively, which are slightly more basic than the radical cations of other guanine species (ca. 3–4). The oxidized neutral FAPyG deprotonates from the formamide group at a pK\textsubscript{a2 ox} of 8.08. The deprotonation of oxidized neutral 2,5FAPyG takes place at the same site (formerly the N7 nitrogen atom) with a very similar pK\textsubscript{a2 ox} of 8.58–8.61 despite the fact that the site is an amino group rather than an amide. In agreement with the computational study by Munk et al.,

FAPyG is the thermodynamically favored product by ca. 5.4–8.5 kcal/mol.

E\textsubscript{r} values of FAPyG and 2,5FAPyG are 0.25–0.32 V and 0.42–0.54 V lower than that of G, respectively. FAPyG has an E\textsubscript{r} that is 0.17–0.22 V higher than that of 2,5FAPyG, making its susceptibility to oxidation somewhat less than that of 2,5FAPyG.

Pathway C. Pathway C starts with oxidative damage caused by a reactive oxygen species attacking the C5 position of guanine to yield the 5-hydroxy-9-methylguanine (5OHG) intermediate shown in Figure 13. While the calculated pK\textsubscript{a} values of SOHG are similar to those of G and many of the other intermediates, the sites of protonation/deprotonation differ. SOHG is protonated at N3 with a pK\textsubscript{a1} of 2.77–3.69, whereas most of the other guanine oxidation intermediates are predominantly protonated at N1 or N7. The only acidic proton remaining in neutral 5OHG is the C5 hydroxyl which deprotonates at a pK\textsubscript{a2} of 8.03–9.44. The oxidized radical cation prefers to be protonated at the N1 position and deprotonates with a pK\textsubscript{a1 ox} of 4.11–4.81. Additional tautomers of 5OHG radical cation (such as the isomer protonated at O5) could not be optimized because of ring-opening at the C5–C6 bond. Similarly, attempts at optimizing a 5OHG radical anion failed because of ring-opening for all structures considered. In the absence of ring-opening, the calculated E\textsubscript{r} value is 0.81–1.05 V higher than that of G.

Similar to the SOH8OG-to-Sp conversion, SOHG can undergo an acyl migration to yield N-methyl-2-deoxospiroiminohydantoin.
Figure 12. Calculated pK_a values and relative reduction potentials for 2,5-diamino-(N-methyl)-6-formamido-4-hydroxypyrimidine (2,5FAPyG). See Figure 2 caption for details.

Figure 13. Calculated pK_a values and relative reduction potentials for 5-hydroxy-9-methylguanine (SOHG). See Figure 2 caption for details.

Figure 14. Calculated pK_a values and relative reduction potentials for N-methyl-2-deoxo-spiroiminodihydantoin (Spred). See Figure 2 caption for details.

Figure 15. Calculated pK_a values and relative reduction potentials for 5-carboxamido-5-formamido-(N-methyl)-2-iminohydantoin (2Ih). See Figure 2 caption for details.
CONCLUSIONS

Three major reaction pathways resulting from the initial oxidation of guanine were investigated, and the reduction potentials and pK_a values of transient intermediates and products were calculated using the scheme developed in our earlier paper. The approach uses high-level ab initio and DFT electronic structure calculations and an implicit solvation model with cavity scaling. The study incorporates computed tautomerization energies to calculate E° and pK_a values and to obtain E_t values that can be compared with experimental measurements in aqueous solution. The B3LYP results are summarized in Figure 16. Pathway A starts at 8-oxoguanine (8oxoG). The calculations show that 8oxoG can easily lose an electron followed by the loss of two protons and the loss of another electron to produce 8-oxopurine (8oxoP). The calculated reduction potentials for subsequent intermediates along pathway A are 0.4–1.1 V higher than that of guanine, indicating that they will most likely not be oxidized further. Pathway A branches at 5-hydroxy-8-oxoguanine (5OH8OG), leading to guaninohydantoin (Gh) at low pH and spiroiminohydantoin (Sp) at high pH. The calculated pK_a of 6.1 for 5OH8OG is in good agreement with a pK_a of 5.7 inferred from the experimental dependence of the branching ratio on the pH. Pathway B leads to two formamidopyrimidine isomers (FAPyG and 2,5FAPyG) through a hemiaminal intermediate. These species have reduction potentials 0.3–0.8 V lower than that of guanine. This is in accord with experimental observations that FAPyG products are favored over 2,5FAPyG. The calculated reduction potentials for subsequent intermediates along pathway B are 0.4–0.8 V higher than that of guanine, indicating that further oxidation of the intermediates is unlikely.

ASSOCIATED CONTENT

Supporting Information

A spreadsheet containing the energetic data and calculations of the pK_a values and reduction potentials. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Notes

The authors decline no competing financial interest.
ACKNOWLEDGMENTS

The authors thank Prof. Cynthia Burrows for stimulating discussions and encouragement. We also thank Profs. Barbara Munk and Richard Lord for their comments and suggestions. This work was supported by a grant from the National Science Foundation (CHE1212281). We thank Wayne State University’s computing grid for computer time.

REFERENCES

(23) Crean, C.; Geacintov, N. E.; Shafirovich, V. Oxidation of Guanine in 8-Oxo-7,8-dihydroguanine by Carbonate Radical Anions: 2005 503 44

